30 research outputs found

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Full text link
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho

    Multi-modal volumetric concept activation to explain detection and classification of metastatic prostate cancer on PSMA-PET/CT

    Full text link
    Explainable artificial intelligence (XAI) is increasingly used to analyze the behavior of neural networks. Concept activation uses human-interpretable concepts to explain neural network behavior. This study aimed at assessing the feasibility of regression concept activation to explain detection and classification of multi-modal volumetric data. Proof-of-concept was demonstrated in metastatic prostate cancer patients imaged with positron emission tomography/computed tomography (PET/CT). Multi-modal volumetric concept activation was used to provide global and local explanations. Sensitivity was 80% at 1.78 false positive per patient. Global explanations showed that detection focused on CT for anatomical location and on PET for its confidence in the detection. Local explanations showed promise to aid in distinguishing true positives from false positives. Hence, this study demonstrated feasibility to explain detection and classification of multi-modal volumetric data using regression concept activation.Comment: Accepted as: Kraaijveld, R.C.J., Philippens, M.E.P., Eppinga, W.S.C., J\"urgenliemk-Schulz, I.M., Gilhuijs, K.G.A., Kroon, P.S., van der Velden, B.H.M. "Multi-modal volumetric concept activation to explain detection and classification of metastatic prostate cancer on PSMA-PET/CT." MICCAI workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC), 202

    Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma

    Get PDF
    Surgery for locoregionally advanced head and neck squamous cell carcinoma (HNSCC) results in 30‒50% five-year overall survival. In IMCISION (NCT03003637), a non-randomized phase Ib/IIa trial, 32 HNSCC patients are treated with 2 doses (in weeks 1 and 3) of immune checkpoint blockade (ICB) using nivolumab (NIVO MONO, n = 6, phase Ib arm A) or nivolumab plus a single dose of ipilimumab (COMBO, n = 26, 6 in phase Ib arm B, and 20 in phase IIa) prior to surgery. Primary endpoints are feasibility to resect no later than week 6 (phase Ib) and primary tumor pathological response (phase IIa). Surgery is not delayed or suspended for any patient in phase Ib, meeting the primary endpoint. Grade 3‒4 immune-related adverse events are seen in 2 of 6 (33%) NIVO MONO and 10 of 26 (38%) total COMBO patients. Pathological response, defined as the %-change in primary tumor viable tumor cell percentage from baseline biopsy to on-treatment resection, is evaluable in 17/20 phase IIa patients and 29/32 total trial patients (6/6 NIVO MONO, 23/26 COMBO). We observe a major pathological response (MPR, 90‒100% response) in 35% of patients after COMBO ICB, both in phase IIa (6/17) and in the whole trial (8/23), meeting the phase IIa primary endpoint threshold of 10%. NIVO MONO’s MPR rate is 17% (1/6). None of the MPR patients develop recurrent HSNCC during 24.0 months median postsurgical follow-up. FDG-PET-based total lesion glycolysis identifies MPR patients prior to surgery. A baseline AID/APOBEC-associated mutational profile and an on-treatment decrease in hypoxia RNA signature are observed in MPR patients. Our data indicate that neoadjuvant COMBO ICB is feasible and encouragingly efficacious in HNSCC

    Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021

    Get PDF
    Imaging markers of cerebral small vessel disease provide valuable information on brain health, but their manual assessment is time-consuming and hampered by substantial intra- and interrater variability. Automated rating may benefit biomedical research, as well as clinical assessment, but diagnostic reliability of existing algorithms is unknown. Here, we present the results of the VAscular Lesions DetectiOn and Segmentation (Where is VALDO?) challenge that was run as a satellite event at the international conference on Medical Image Computing and Computer Aided Intervention (MICCAI) 2021. This challenge aimed to promote the development of methods for automated detection and segmentation of small and sparse imaging markers of cerebral small vessel disease, namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes of presumed vascular origin (Task 3) while leveraging weak and noisy labels. Overall, 12 teams participated in the challenge proposing solutions for one or more tasks (4 for Task 1-EPVS, 9 for Task 2-Microbleeds and 6 for Task 3-Lacunes). Multi-cohort data was used in both training and evaluation. Results showed a large variability in performance both across teams and across tasks, with promising results notably for Task 1-EPVS and Task 2-Microbleeds and not practically useful results yet for Task 3-Lacunes. It also highlighted the performance inconsistency across cases that may deter use at an individual level, while still proving useful at a population level

    Determining the bias and variance of a deterministic finger-tracking algorithm

    No full text
    Finger tracking has the potential to expand haptic research and applications, as eye tracking has done in vision research. In research applications, it is desirable to know the bias and variance associated with a finger-tracking method. However, assessing the bias and variance of a deterministic method is not straightforward. Multiple measurements of the same finger position data will not produce different results, implying zero variance. Here, we present a method of assessing deterministic finger-tracking variance and bias through comparison to a non-deterministic measure. A proof-of-concept is presented using a video-based finger-tracking algorithm developed for the specific purpose of tracking participant fingers during a psychological research study. The algorithm uses ridge detection on videos of the participant’s hand, and estimates the location of the right index fingertip. The algorithm was evaluated using data from four participants, who explored tactile maps using only their right index finger and all right-hand fingers. The algorithm identified the index fingertip in 99.78 % of one-finger video frames and 97.55 % of five-finger video frames. Although the algorithm produced slightly biased and more dispersed estimates relative to a human coder, these differences (x=0.08 cm, y=0.04 cm) and standard deviations (σx=0.16 cm, σy=0.21 cm) were small compared to the size of a fingertip (1.5–2.0 cm). Some example finger-tracking results are provided where corrections are made using the bias and variance estimates

    Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI : a feasibility study

    No full text
    We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests.
 
 From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (<i>P</i> < 0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor (ER) subtype tumors (<i>P</i> < 0.0001) and the triple-negative (TN) subtype tumors (<i>P</i>=0.0039), but not for tumors of the HER2 subtype (<i>P</i>=0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.&#13

    Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI : a feasibility study

    No full text
    We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests.
 
 From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (<i>P</i> < 0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor (ER) subtype tumors (<i>P</i> < 0.0001) and the triple-negative (TN) subtype tumors (<i>P</i>=0.0039), but not for tumors of the HER2 subtype (<i>P</i>=0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.&#13
    corecore